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We consider a macroion confined to a cylindrical cell and neutralized by oppositely charged counterions.
Exact results are obtained for the two-dimensional version of this problem, in which ion–ion and ion–macroion
interactions are logarithmic. In particular, the threshold for counterion condensation is found to be the same as
predicted by mean-field theory. With further increase of the macroion charge, a series of single-ion condensa-
tion transitions takes place. Our analytical results are expected to be exact in the vicinity of these transitions
and are in very good agreement with recent Monte Carlo simulation data.
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Properties of charged polymers in solution are intimately
related to the distribution of small ions around them. A key
theoretical model for studying this distribution is that of an
infinite charged cylinder, immersed in a solution containing
counterions, and confined to a cylindrical cell of finite size.
When the cell size increases to infinity only some of the
counterions remain bound at a finite distance from the cylin-
der. The remaining ions escape to infinity, leaving behind a
distribution of ions that compensates only part of the cylin-
der’s charge. Furthermore, below a critical linear charge den-
sity �or, equivalently, above a critical temperature�, all the
counterions escape to infinity: The ion density at any finite
distance from the charged cylinder is zero.

The existence of a critical temperature, above which all
ions decondense is predicted within mean-field �MF� theory
�1–5�. We consider here the equivalent two-dimensional �2D�
problem where ion-ion interactions, as well as ion–macroion
interactions, are logarithmic. We show that some thermody-
namic properties can be evaluated exactly in this case, with-
out resorting to the MF approximation. In particular, the de-
condensation temperature is the same as that predicted by
MF theory—strongly suggesting that a similar conclusion
may hold in the three-dimensional �3D� case, where ion cor-
relation effects are expected to be weaker than in two dimen-
sions. Very recently, this conclusion was also pointed at by
Monte Carlo �MC� simulations in two and three dimensions
�6�, in which no deviation from the MF decondensation tem-
perature was found numerically. Beyond the threshold for
ion concentration, we obtain exact results for the contact
density and electrostatic energy, showing a series of discrete
binding transitions, in agreement with the recent MC simu-
lations, and in striking difference from the MF theory pre-
diction.

We begin by briefly discussing the MF theory for a
charged cylinder of radius a in three dimensions, confined in
a cylindrical cell of radius R. The electrostatic potential de-
pends only on the radial coordinate r and obeys the Poisson–
Boltzmann equation �7�

−
1

4�
�2� = �̃��r̃�e−� −

�

2�
��r̃ − 1� �1�

in which r, the spatial coordinate, was rescaled by the cylin-
der radius: r̃=r /a, and � is the reduced electrostatic poten-
tial, in units of the thermal energy kT. We assume that coun-
terions carry a positive charge e and the cylinder is
negatively charged, with a linear charge density −e�. This
charge density enters Eq. �1� via �= lB�, the so-called Man-
ning parameter �8�, and lB=e2 /kT is the Bjerrum length. The
step function ��r̃� is equal to unity for 1� r̃�R /a and to
zero elsewhere, and the boundary condition, ���r̃=R /a�=0,

enforces charge neutrality. Finally, �̃ is a rescaled fugacity,
which does not have any physical consequence since chang-
ing its value merely shifts the MF solution � by a constant.
The only dimensionless parameters in the problem are thus �
and R /a.

By defining u=log�r̃�=log�r /a� and 	=�−2u, Eq. �1�
becomes

−
1

4�

d2	

du2 = �̃e−	 �2�

for 0
u
L with boundary conditions

�d	
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�
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= 2�� − 1� �d	
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�

u=L
= − 2, �3�

where L=log�R /a�. Equations �2� and �3� can be interpreted
as describing an ionic solution confined between two parallel
planar surfaces—one at u=0, another at u=L, having surface
charges

�u=0 = −
1

2�
�� − 1�;�u=L = −

1

2�
�4�

�using units such that lB=1.� In this equivalent planar prob-
lem, the surface at u=L is negatively charged and thus al-
ways attracts the positively charged counterions. On the
other hand, the surface at u=0 may be positively or nega-
tively charged, depending on �: for ��1 ions are repelled
from the positively charged surface, and escape to infinity as
L→�; for �
1 a finite fraction of the ions remain bound, so
as to neutralize the negatively charged surface at u=0.*Electronic address: yorambu@kitp.ucsb.edu
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The mapping from a cylindrical geometry to a planar one
provides an instructive way to understand the behavior of the
MF solution �1�, but is valid only on the MF level. On the
other hand, in the 2D case we show that a similar transfor-
mation is exact, on the Hamiltonian level.

We begin with the Hamiltonian Hn=2qq��i=1
n log�ri /a�

−q�2�i�j log�ri−r j�, which describes n pointlike ions of
charge q� interacting with a central disc of charge q and
radius a in two dimensions. In analogy with the 3D model,
we assume that ions are confined to the radial coordinates
a
r
R. Charge neutrality requires q /q�=n so that, in con-
trast to the 3D case, the number of ions is finite. The partition
function is given by Zn= �1/n ! ��i	a

Rdriri	0
2�d�i exp�−�H�,

where �=1/kT. We define a Manning parameter �=�qq� so
that

�Hn = 2��
i=1

n

log�ri/a� −
�

n
�
i�j

log�ri − r j� , �5�

where charge neutrality is assumed. For convenience, in the
following we set �=1.

In the grand-canonical ensemble, the partition function
can be transformed into a field-theory form �as outlined in
Ref. �9��

Z� = �
n=0

�
�̃n

n!
exp�− Hn� �
 D	 exp�−

1

q�2��
 dr̃

�
 1

8�
��	�2 − i	

�

2�
��r̃ − 1� − �̃��r̃�exp�− i	��� . �6�

As q�2→0 the prefactor inside the exponential tends to in-
finity. Hence, MF theory �Eq. �1�� becomes exact, for any
fixed value of �, in the thermodynamic limit n→�. In the
following, we analyze the canonical partition function Zn for
finite n, characterized by the two parameters � and n �or,
alternatively, q and q��. To proceed, we note that

Zn =
�

n!

 dui
 d�i exp�− H̃� , �7�

where ui=log�ri /a�, �=exp��n−1�� log a�,

H̃ = �� − 2 + �/n��
i

ui −
q�2

2 �
i�j

v�ui − uj,�i − � j� , �8�

and

v�u,�� = − log�2 cosh u − 2 cos �� . �9�

The potential v is linear for �u��1 being then equal, approxi-
mately, to −�u�. We note that, since 0
��2� is a compact
coordinate, the correction to this linear potential is short
ranged.

A charge q, evenly smeared over the � interval, exerts an
exactly linear potential,

− q

2�



0

2�

d� log�2 cosh u − 2 cos �� = − q�u� . �10�

It is thus convenient to interpret the linear term in �8� as
coming from an interaction of the ions with a smeared charge
q0 at u=0 and a smeared charge q1 at u=L, which requires
−q��q0−q1�=�−2+� /n. Adding the same constant to q0 and

q1 does not influence the force exerted on the ions, and we
are free to choose this additive constant such that the system
is overall charge neutral, in the following sense: nq�=−�q0

+q1�. With this requirement there is a unique choice of q0

and q1,

q�q0 = − � + 1 −
�

2n
; q�q1 = − 1 +

�

2n
, �11�

which bears some resemblance to Eq. �4�.
So far, we made an exact transformation of the problem

from cylindrical coordinates into a problem defined on a
strip: the coordinate u goes from 0 to L, and the coordinate �
is periodic �see Fig. 1�. On the �u ,�� strip, ions interact with
each other through a potential of the form −q�2�u1−u2�, aug-
mented by a short-range contribution. They also interact with
two smeared charges, q0 at u=0 and q1 at u=L, and the
system is overall charge neutral. Note that any critical prop-
erty of the system should be exactly captured by the long-
range linear potential term.

Since we are interested in the behavior when L→�, we
next introduce an approximation, treating the 2D strip as a
one-dimensional �1D� domain, with a purely linear ion-ion
interaction. This can be thought of as the result of coarse
graining on a scale of order 2�. Scaling analysis of the par-
tition function shows that in the 1D model, the value of some
observables is the same, when L→�, as in the 2D
problem—for example, the number of ions between u=0 and
u=�L, for any 0
�
1. Therefore we expect the number of
bound ions, evaluated in the 1D approximation, to be the
same as in the 2D problem �10�.

In the 1D model, the partition function is Z1D
= �1/n ! ��i=1

n 	0
Ldxi exp�−H1D� where

H1D =
1

2



0

L

dxq�x���x� −
1

4



0

L

dx�d�

dx
�2

, �12�

q�x� is the one-dimensional charge density, including the
boundary charges at 0 and L, and d2� /dx2=−2q�x�. Charge
neutrality ensures that d� /dx=0 outside the interval �0,L�.
To evaluate Z1D, the n particles can be ordered according to
their position �canceling the 1/n! in Z1D�. The derivative
d� /dx is then equal to −2q0 between 0 and x1 and decreases
in a stepwise fashion by 2q� at each ion position xi, so that

Z1D = 

0

L

dx1

x1

L

dx2 ¯ 

xn−1

L

dxn

�exp�− �0x1 − �1�x2 − x1� ¯ − �n�L − xn�� , �13�

where �i= �q0+ iq��2. Note that this expression could have
also been obtained directly by writing the partition function

FIG. 1. The transformation from cylindrical geometry to a prob-
lem defined on the �u ,�� strip �schematic representation�.
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�7�, with a linear electrostatic potential v�x ,���−�x� ob-
tained from �9� in the limit L→�.

It follows from Eq. �13� that Z1D= f0 � f1 � ¯ � fn�L� is the
convolution of f0 ,… , fn, evaluated at u=L, where f i�u�
=exp�−�iu� are defined for u�0. The Laplace transform of
Z1D�L� is thus

Z1D�s� = �
k=0

n
1

�k + s
, �14�

so that, performing the inverse Laplace transform,

Z1D = �
k=0

n

ck exp�− �kL�;ck = �
j�k

1

� j − �k
. �15�

Note that neither �k or ck depend on L.
In the limit L→�, Z1D is dominated by the term k=k*

having the smallest �k. When the Manning parameter �=0,
this dominating term is k*=0; with increase of � ,k* increases
in a stepwise fashion, changing by unity at n threshold values
�where �k=�k−1�,

�k =
n

n + 1 − k
. �16�

Each one of these discontinuities in k* corresponds to a ther-
modynamic transition. In the following, we analyze the be-
havior of several quantities at these transitions.

To evaluate the contact density n�0�, it is sufficient to
consider the distribution function of x1 �an ion at x=0 is
necessarily the closest to the origin�

n1�x1� = ��0 − �k*�e−��0−�k*�x1. �17�

We thus find that n�0�=�0−�k* is equal to

n�0� = k*
− 2 + �2 −
k* − 1

n
��� , �18�

where

k* = � 0, � � 1

�1 + n�1 − �−1�� , � � 1
� . �19�

Below the first threshold at �1=1, n�0� vanishes, whereas
above this threshold it is finite. Therefore the threshold for
ion condensation is the same as predicted by MF theory.
Note that the contact density is continuous at �=�1. This is
true also at each one of the other transitions �k. However, the
derivative of n�0� with respect to � is discontinuous.

In the original cylindrical problem, our result for n�0�
translates into an ion concentration ��a�=1/ �2�a2�n�0�. In
Fig. 2 we compare this result with a2��a�, as obtained from
MC simulation of the full 2D problem. Although we used the
approximate 1D model, the agreement between the analytical
prediction and simulation is very good. In the limit n→�,
the contact density �18� approaches the MF theory predic-
tion, ��a�→ ��−1�2 / �2�a2��.

An exact sum rule, similar to the contact theorem for the
planar electric double layer �11�, relates the contact density
in the 2D strip to the number of bound ions: n�0�=q0

2− �q0

+k*q��2 �in agreement with Eq. �18��. This relation is ob-

tained by comparing the pressure across the plane u=0 to the
pressure acting across a plane u=u0, where u0 is chosen to be
far away from both u=0 and u=L. Since the sum rule is
exact in both the 2D problem and the 1D approximation,
equality in the number of bound ions implies that ��a� in the
cylindrical problem, as calculated from Eq. �18�, is exact.

To evaluate the density at u
0, the distribution of all ions
x2 ,x3 ,… must be evaluated. We find that k* �Eq. �19�� is
equal to the number of bound ions, and that for the mth
bound ion, the Laplace transform of the distribution function
is

Nm�s� = �
j=1

m
� j

s + � j
, �20�

where

�m = �k* − m + 1�
− 2 +
2�n + 1� − m − k*

n
�� . �21�

The Laplace transform of the total particle density is thus

N�s� =
�1

s + �1
�1 +

�2

s + �2

1 + …�1 +

�k*

s + �k*
�…�� .

�22�

This result provides a particularly simple expression for all
moments of the single-ion distribution in the cylindrical co-
ordinates, because the �−k�-th moment,

�r−k� =
2�

n



a

�

rdrr−k��r� =
a−k

n



0

�

du exp�− ku�n�u�

=
a−k

n
N�k� , �23�

where ��r�=n�u� / �2�r2� is the ion density in the cylindrical
coordinates. Figure 3 shows �a /���1/r�, obtained from Eq.
�23� �solid lines�. Rescaling with �=a /� is used to facilitate
comparison with MC simulation results from Ref. �6� �sym-
bols�. The agreement is good but not perfect—deviations re-
flect the effect of using the 1D model as an approximation to

FIG. 2. The contact density, a2��a�, as obtained from Eq. �18�
�lines�, compared with MC simulation results �6� �L=300�: n=1
�circles�, 2 �crosses�, 3 �squares�, and 5 �diamonds�. When ��1 the
contact density vanishes.
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the 2D model on the strip. As should be expected, agreement
is perfect in the MF limit �n→�� as well as in the opposite
limit, n=1.

We next evaluate the electrostatic energy. To leading order
in L, the free energy in the 1D model is −log Z1D=�k*L,
which corresponds to a free energy ��k

*−q1
2�L in the original

cylindrical problem. The mean electrostatic energy E is
found by taking a derivative ��d /d��, which is equivalent to
��d /d�� by virtue of Eq. �5�, and yields

E =
�

n
�n − k*��n − k* + 1�L . �24�

One may expect to find E=q�2�n−k*�2L, the electrostatic en-
ergy of a cylindrical capacitor having charges ±q��n−k*� on
its inner and outer surfaces. Equation �24� is similar to this
expression, but there is a correction �second parentheses,
third term�, whose contribution goes to zero only in the limit
of large n. We expect Eq. �24� to be the exact leading term in
the electrostatic energy for L→�. A comparison with MC
simulation data �L=300� �6� is shown in Fig. 4.

Finally, close to each one of the transition points �=�k, �k
approaches �k−1 and, as seen from Eq. �15�, both ck and ck−1
diverge. Concentrating only on their divergent contribution
to the free energy, we find that

E � E0 +
�

�� − �k�
�25�

on both sides of the transition, where E0 is the leading term
in L �Eq. �24��. The leading divergence in the heat capacity
�E /�T follows as �k

2 / ��−�k�2. Scaling arguments, previously
presented in Ref. �6�, are thus in agreement with the analyti-
cal result.

In summary, the counterion condensation problem in two
dimensions is treated here analytically, taking ion-ion corre-
lations into account. A series of single-ion condensation tran-
sitions is found with increasing �, in agreement with recent
MC simulations �6�, the first of these occurring at the MF
theory transition, �=1. A possible experimental realization of
this problem may be obtained with parallel, rodlike polyelec-
trolytes. Being an analog of the 3D problem with lower di-
mensionality, the 2D model suggests that the Manning tran-
sition temperature in three dimensions is exact even in the
presence of ion-ion correlations.
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FIG. 3. �a /���r−1� as calculated from Eq. �23� for n=1, 2, 3, 5,
and 100 �alternating solid and dashed lines�. The symbols show MC
simulation results �6� for the same quantity �L=300�. The dotted
line shows the prediction of MF theory.

FIG. 4. Leading �large L� term in E / �nL� �Eq. �24�, lines�, com-
pared with MC simulation data from Ref. �6� �L=300, symbols�:
solid line and circles, n=1; dotted line and crosses, n=2; dashed
line and squares, n=4. The inset shows E / �nL� for n=15 �solid
line�, together with the MF prediction E / �nL�=�−1 for �
1 �dotted
line�.
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